A review of deep learning methods for pixel-level crack detection

نویسندگان

چکیده

Cracks are a major sign of aging transportation infrastructure. The detection and repair cracks is the key to ensuring overall safety In recent years, due remarkable success deep learning (DL) in field crack detection, many researches have been devoted developing pixel-level image segmentation (CIS) models based on DL improve accuracy, but as far we know there no review DL-based CIS methods yet. To address this gap, present comprehensive thematic survey techniques. Our offers several contributions area. First, more than 40 papers journal or top conference most published last three years identified collected systematic literature method. Second, according backbone network architecture proposed them, they grouped into 10 topics: FCN, U-Net, encoder-decoder model, multi-scale, attention mechanism, transformer, two-stage multi-modal fusion, unsupervised weakly supervised learning, be reviewed. Meanwhile, our focuses discussing strengths limitations each topic so reveal latest research progress field. Third, publicly accessible data sets, evaluation metrics, loss functions that can used for systematically introduced summarized facilitate researchers select suitable components their own tasks. Finally, discuss six common problems existing solutions them CIS, then suggest eight possible future directions

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

islanding detection methods for microgrids

امروزه استفاده از منابع انرژی پراکنده کاربرد وسیعی یافته است . اگر چه این منابع بسیاری از مشکلات شبکه را حل می کنند اما زیاد شدن آنها مسائل فراوانی برای سیستم قدرت به همراه دارد . استفاده از میکروشبکه راه حلی است که علاوه بر استفاده از مزایای منابع انرژی پراکنده برخی از مشکلات ایجاد شده توسط آنها را نیز منتفی می کند . همچنین میکروشبکه ها کیفیت برق و قابلیت اطمینان تامین انرژی مشترکان را افزایش ...

15 صفحه اول

Pixel-wise Deep Learning for Contour Detection

We address the problem of contour detection via per-pixel classifications of edge point. To facilitate the process, the proposed approach leverages with DenseNet, an efficient implementation of multiscale convolutional neural networks (CNNs), to extract an informative feature vector for each pixel and uses an SVM classifier to accomplish contour detection. In the experiment of contour detection...

متن کامل

Deep learning-based CAD systems for mammography: A review article

Breast cancer is one of the most common types of cancer in women. Screening mammography is a low‑dose X‑ray examination of breasts, which is conducted to detect breast cancer at early stages when the cancerous tumor is too small to be felt as a lump. Screening mammography is conducted for women with no symptoms of breast cancer, for early detection of cancer when the cancer is most treatable an...

متن کامل

Melanoma detection with a deep learning model

Background: Skin cancer is one of the most common forms of cancer in the world and melanoma is the deadliest type of skin cancer. Both melanoma and melanocytic nevi begin in melanocytes (cells that produce melanin). However, melanocytic nevi are benign whereas melanoma is malignant. This work proposes a deep learning model for classification of these two lesions.    Methods: In this analytic s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Traffic and Transportation Engineering

سال: 2022

ISSN: ['2589-0379', '2095-7564']

DOI: https://doi.org/10.1016/j.jtte.2022.11.003